附件 5

湖北省青年科技创新奖公示材料-顾宇

湖北省青年科学技术创新奖提名公示信息						
提名者		湖北省总工会				
姓 名	顾宇	性别	男	国籍	中国	
身份证号				民族	汉	
出生日期	1987. 1	出生地	武汉	从事专业	半导体显示	
文化程度	研究生	学 位	博士	授予时间	2015. 6	
职 称	中级工程师	职 务	EL 技术开长发部	联系电话	15527706129	
工作单位	名 称 武汉华星光电半导体显示技术有限公司					
	地址	湖北省武汉	市左岭大道8号	邮政编码	430075	
	电子邮箱	guyu@tcl.com				
受教育情况:						
2006. 09-2010. 06 武汉大学 学士 应用化学						
2010. 09-2015. 06 武汉大学 博士 材料物理与化学						
候选人科技成就和贡献						
	候选人主要从事 EL 材料器件开发工作。主要聚焦于高性能、长寿命和高可靠性 EL					
简介	简介 发光器件开发。通过新的材料开发、器件优化、产线转化率提升,并通过新的出光 结构开发,不断提升器件的发光效率和寿命,并使用于武汉华星光电半导体显示技					

术有限公司的所有产品中。

升>20%, 达到业内先进水平。

候选人主 要科学技 发;在"长寿命 OLED 技术开发"中达成既定的 RGB 器件寿命及稳定性目标,寿命分别达到 R T80>25000 h; G T80>14000 h; B T80>12000 h;在 "国产化自研 EL 材料器件技术开发"中瓦城自主专利 28 篇;测试材料 25 支; R: V@J10=3.31V, Effi. @0.685=64.5cd/A, T95@J10=1300h;G: V@J10=3.54V, Effi. =157.2cd/A, T95@J10=1200h;B: V@J10=3.38V, Effi. =9.4cd/A, T95@J10=880h。

2020 年, 主要进行完成了长寿命 OLED 技术开发和国产化自研 EL 材料器件技术开

术成就和

2021年,主要进行完成了高性能 EL 材料器件(C5)开发; 达成 EL Power 1.88W; LT95 >500hr(FHD) 450hr(WQHD)@550nit

贡献

2022 年,主要进行完成了窄边框低功耗屏幕技术开发和叠层 EL 器件技术开发;在 "窄边框低功耗屏幕技术开发"中达成 t4 厂内首支 LTPO 8T1C 架构产品技术开发; 高亮条件下产品寿命达到 1000 h (@850 nits); RA 504 h 无信耐性不良; t4 厂内 LTPO 最窄边框;"叠层 EL 器件技术开发"中达成高效率和长寿命的目标,相较于 传统的单层器件效率提升 80%,功耗降低 21%,寿命提升 250%。

2023年,主要完成薄膜封装性能提升技术开发、高性能 EL 材料器件开发和新型出 光结构技术开发;在"薄膜封装性能提升技术开发"中完成双 85 工作信耐性超过 240 h;"高性能 EL 材料器件开发"中达成功耗降低 7%,拖影水平提升 50%,漏流 水平降低 10%,"新型出光结构技术开发"中完成显示屏功耗降低 10%的目标; 2024年,主要完成长寿命低功耗 0LED 技术开发,完成功耗降低>10%,显示寿命提

代表性课题

年度	重要项目		
2020	长寿命 OLED 技术开发		
2020	国产化自研 EL 材料器件技术开发		
2021	高性能 EL 材料器件(C5)开发		
2022	窄边框低功耗屏幕技术开发		
2022	叠层 EL 器件技术开发		
2023	薄膜封装性能提升技术开发		
2023	高性能 EL 材料器件开发		
2023	新型出光结构技术开发		
2024	长寿命低功耗 OLED 技术开发		
	l .		